RUBY vers. 2

Updated on December 15 2006

Thanks to Giulio Ardoino for his contribute.

o 9

The strings are written between ‘’ or between (but in this case they will

become interpreted) for ex.:

a = 2 (numbers must be written without apexes singles or doubles)

puts 'a’ ---> it will print a because between parenthesis the variable a is
interpreted as string

puts "a" ---> it will print a because between parenthesis the variable a is
interpreted as string

puts a ---> it will print 2 because the variable a is a number

a = ‘casa’ (the strings must be written with apexes otherwise we will have
an error)

puts '‘a' ---> it will print a
puts "a" ---> it will print a
puts a ---> it will print casa

A date is printed on video with instruction puts (the s means string)

puts 4 + 4 --> it will print -- 8

puts 5**2 --> it will print -- 25 (5 at square)
puts ' --> it will be empty

puts 'You'are back’ --> it will give error

puts 'You\'re back' --> it will print -- You're back

+ joins the strings e/o numbers

The variables

The variables are not objects

Declare a Variable:

variabileuno = ‘casa’

variabiledue = 2 (numbers must be written without apexes, less then we don’t
want that 2 is a string)

puts variabileuno *2 --> it will print -- casacasa
variabiletre = ' casa'

puts variabiletre * 2 --> it will print -- casa casa
varl = 20

var2 = varl

puts varl --> it will print -- 20

puts var 2 --> it will print -- 20

varl = 'seven'
puts varl --> it will print -- seven

puts var2 --> it will print -- 20

Methods

The methods convert the dates of variables

variable.converter

.to s --> it converts the variable in string

.to i --> it converts the variable in number

varl = 5

var2 = '12'

puts varl.to s + var2 --> it will print -- 512 (as string and not as number)
varl = 5

var2 = '12'

puts varl + var2.to i --> it will print -- 17 (as number and not as string)

Obtain dates from input of keyboard
puts ‘What\'s your name?"
nome = gets (the function gets waits the inserting of dates from keyboard, but
it leaves a space, i)
puts 'Ciao ' + nome + 'e bello conoscerti.' --> it will print --- Ciao Marco e
--> bello conoscerti.
nome = gets.chomp (writing chomp it’s not considered the final space)

Methods or functions

If the objects (such as strings, entires and comma mobile) are names in Ruby,
then the methods are like the verbs. Like every verb it needs of a name, every
method needs of an object.

Now many methods:

.reverse (the variable is written on the contrary)
.length (writes in entire numbers “and not in string” the length of variable)
.to s (it converts the variable in string)

.to i (it convert the variable in entire)

.upcase (it writes the variable in upper case)
.downcase (it writes the variable small)
.swapcase ()
.capitalize (it writes the first letter in upper case)
.center (it insert the variable at center)

Jjust (it insert the variable on the left)

.rjust (it insert the variable on the right)

.times (repeat the variable more times -->see do)
Jjoin (join ---> see the Array)

.slice (get the character for character of a string)

Random

puts rand (give me random numbers with the comma)
puts rand(1000) (give me entire numbers from 0 to 999)
puts

Control of flow

> greater

< minor

== equal at

= different equal
>= minor equal
<= greater equal
|| or

&& and

IF ELSIF ELSE END (end it always goes inserted to the end of every if and
while)
a=10
b =20
ifa>Db

puts 'a is greater then b'
elsif a ==

puts 'a is equal at b’
else

puts 'a is minor than b'
end

WHILE END (end it always goes inserted to the end of every if e while)
puts 'Indovina il numero'
a = gets.chomp //the inserted number will be considered as string and not as
number
while a !'="'100"
puts 'Hai inserito il numero sbagliato'
a = gets.chomp
end
puts 'Hai indovinato il numero'

Array and Iterators

0 1 2 3
citta = ['Lucca’, 'Firenze', 'Pistoia’, 'Siena']
puts citta ---> it will print -- tutte le citta dall'alto verso il basso

puts "' ---> prints an empty row

puts citta[0] ---> it will print -- Lucca

puts citta[2] ---> it will print -- Pistoia

puts citta[4] ---> it will print -- nil that is nothing because the array 4 doesn’t
exist

each is a method used for array, it goes always used together to do and end
do it not a method.

0 1 2 3
citta = ['Lucca’, 'Firenze', 'Pistoia', 'Siena']
citta.each do |italia|
puts 'Io ho abitato in queste ' + italia + '.!" ---> it will print -- all the
---> towns toward down
end

do, we see another use of do (do is not a method)

3.times do
puts 'ciao’ ---> it will print -- 3 times ciao from up toward down
end
0 1 2 3
citta = ['Lucca’, 'Firenze', 'Pistoia’, 'Siena']
50.times do

puts citta ---> it will print -- 50 times Lucca Firenze Pistoia Siena from up to
down

puts[] ---> it will print -- 50 times nothing, that is it won’t do anything.
end

Use methods to enlivend the array

.push (insert)

.pop (remove the last object from array)

Jength (it says from how many elements in number is composed the array)
citta=[]

citta.push 'Lucca’ ---> insert Lucca on array

puts citta.length ---> the array is composed from 1 object

citta.push 'Firenze' ---> insert Firenze in array

citta.push 'Pistoia’ ---> insert Pistoia in array

puts citta.length ---> the array is composed from 3 objects

citta.pop ---> delete Pistoia, that is the last object, from array
puts citta.length ---> the array is composed from 2 objects

We learn to write our methods or functions.

A function starts with def and ends with end. If the objects in ruby are like
the names in English, the methods are like the verbs.

The methods have NOT to start with the letter upper case

This below is an example of a method

def prova
puts 'ciao’
end
prova ---> it will print -- ciao

The local variables live only inside the method, if you use them out of method,
you will have an error.

The local variables (inside the method) and outside from this, can have the
same name, but they will never interfere one with the other.

We use 1 local variable and 1 parameter (thanks to local variable called
number):

def prova numero
puts 'ciao' * numero

end
prova 3 ---> it will print -- ciao 3 times
prova ---> will give an error because it misses a parameter (wrong number

of arguments (0 for 1) (ArgumentError)

We use 2 local variables “number and double” and we pass 3 parameters,
redouble is always the name of method.

def raddoppia numero

doppio = numero*2

puts numero.to s+' moltiplicato fa ' +doppio.to s
end
raddoppia 7 ---> it will print -- 6 moltiplicato fa 12

The last value returned, gives 1 method, it’s the last expression valued and not
the last string on method. Infact (sono una stringa) is between apexes, that
means, that it is an expression.

We use only 1 local variable and 1 expression at the end of method.
def raddoppia numero

puts 'ciao*numero

‘sono una stringa'

end
x = raddoppia 3 ---> it will print -- ciaocioacioa
puts x ---> it will print -- sono una stringa

Now we pass 3 dates to a method we have created, before we declare how
many variables we use declaring the method (we can put them between
parenthesis), after we recall the method passing to it the other variables,
enough to consider the number (in this case are 3):

def prova a, b, c

puts 'buon giorno ' +a + b
end
¢ = 'Cristian '
d = 'Massimiliano '
e = ‘Roberto’
prova c, d, e ---> it will print -- buon giorno Cristian Massimiliano Roberto

Other example with method for ftp:
require 'net/ftp'
def f (ip, ut, pa)
ftp = Net::FTP.new(ip)
ftp.login(ut, pa)
files = ftp.chdir('/directoryinventata/')
ftp.putbinaryfile('/Aggiornamento/file.tgz', 'file.tgz', 1024)
ftp.putbinaryfile('/Aggiornamento/file1.tgz', 'filel.tgz', 1024)
ftp.putbinaryfile('/Aggiornamento/file.sh', 'file.sh', 1024)
ftp.close
end

puts 'Inserisci 1\' ip’

ip = gets.chomp

puts 'Inserisci utente'
utente = gets.chomp
puts 'Inserisci password'
password = gets.chomp

f ip, utente, password

Classes and Objects

A category of objects such as dogs is called class, and same specified object
belonging to a class is called instance of the class.

The class starts always withe the letter upper case.

Dog is a class

The object belonging to the class Cane is called instance.

First we define the characteristics of the class, later we create an instance.

class Dog
def speak
puts "Bau"
end
end

The class Dog starts with class and ends with end
speak is a method of the class

lassie = Dog.new

lassie is the instance of the class Dog

The method new create a new object, that is a new instance of the class.
Now we decide to give to lassie a property (speak)

lassie.speak

Or we can exec temporarily the class like that:
(Dog.new).speak

or

Dog.new.speak

pochi is an instance of the class (it’s a species of variable), instead
Dog.new.speak will disappear just executed.

Other example

class Greeter
def initialize name= "World"
@name = name
end

def say hi
puts "Hi #{@name}!" # "Hi " + @name + "!"
end

def say bye
puts "Bye #{©@name}, come back soon." # "Bye " + @name + ",come
back soon."
end
end

Greeter is the class
@name is a variable of instance, available for all methods of a class

We create an object:

g = Greeter.new("Pat") #has been created the object g
g.say hi #we use the object using the methods
g.say bye #we use the object using the methods

#g.@name #It’s not possible use it

class Greeter

attr accessor :name
end
#How modify a class, doesn’t change the objects that already exist, but it has
effect on new objects that will be created. It has effect on variables of object.
Greeter.new("Andy")

g.respond to?("name")
g.respond to?("name=")
g.say hi #Stampera Hi Pat !
g.name="Betty"

g

g.name

g.say hi #Stampera Hi Betty!

Example complete:
class MegaGreeter
attr accessor :names

Create the object

def initialize(names = "World")
@names = names

end

Say hi to everybody
def say hi
if @names.nil?
puts "..."
elsif @names.respond to?("each")

@names is a list of some kind, iterate!

@names.each do

|name|
puts "Hello # {name}!"
end
else
puts "Hello #{@names}!"
end

end

Say bye to everybody
def say bye
if @names.nil?
puts "..."
elsif @names.respond to?("join")
Join the list elements with commas
puts "Goodbye #{@names.join(", ")}. Come back soon!"
else
puts "Goodbye #{@names}. Come back soon!"
end
end

end

mg = MegaGreeter.new #1 create the object mg from class MegaGreeter

mg.say hi #1t prints Hello World !
mg.say bye #Goodbye World. Like back soon!

Change name to be "Zeke"
mg.names = "Zeke" #I change the value to variable of the object

mg.say hi #1t prints Hello Zeke!
mg.say bye #1t prints Hello Zeke. Like back soon!

Change the name to an array of names
mg.names = ["Albert", "Brenda", "Charles", "Dave", "Englebert"]
mg.say hi #1t prints Hello Albert!
#1t prints Hello Brenda!
#1t prints Hello Charles!
#1t prints Hello Dave!
#1t prints Hello Englebert!
mg.say bye #stampa Goodbye Albert, Brenda, Charles, Dave, Englebert.
Come back soon!

Change to nil

mg.names = nil #1 change name at variable leaving empty
mg.say hi #It prints ...
mg.say bye #1t prints ...

end

Stampera a video:

Hello World!

Goodbye World. Come back soon!
Hello Zeke!

Goodbye Zeke. Come back soon!
Hello Albert!

Hello Brenda!

Hello Charles!

Hello Dave!

Hello Englebert!

Goodbye Albert, Brenda, Charles, Dave, Englebert. Come
back soon!

Write and read a file

Write in a file:

file = ‘prova.txt’ ---> [insert the name of file in a variable
testo = 'Prova di scrittura in un file' ---> I insert the text

File.open file, 'w' do |f]| ---> [use the method File.open I read the

---> file, with the cycle do I read byte for byte
f.write testo ----> [write the string of variable testo
end ---> | close the cycle do

Read a file (2 ways):

1)

file = 'prova.txt' --->] insert the name of file in a variable

lettura = File.read file ---> I use the method File.read to read the variable file
puts lettura --> Using puts | read the variable lettura

or

2)

|O.foreach("prova.txt") { |line| puts line } ---> For each line read from prova.txt,

---> it prints on video 1 line

Read a row of 1 file and get the characters:

arr = IO.readlines("rimmer.txt") --->] read of file rimmer.txt
a = arr[6] ---> I insert the row 5 of array into variable a
puts a.slice(9..14) ---> [print the letters from 9 to 14 of the row 5 of array

Write and read of file using the method yaml and using an array

require 'yaml' --- > | use the method yaml

array = ['ciao’, 'io', 'sono’, 'Luca’ --- > | insert the dates in a array

test = array.to_yaml --- > Using the method yaml, | insert the array
---> into variable testo

puts test --- > We print on video the variable test

file = 'rimmer.txt’' ---> Wecreate the file rimmer.txt

File.open file, 'w' do |f| ---> | use the method File.open in writing

---> to write into variable file with do

f.write test ---> | write the variable text (the array)
into file
end ---> | finish the cycle end
lettura = File.read file ---> Into variable lettura | insert the read
made of file rimmer.txt
leggiarray = YAML:load lettura ---> Using YAML:load | read the file

---> |lettura that | insert in avariable
puts leggiarray ---> | read leggiarray

	Classes and Objects
	Other example
	Write in a file:
	Read a file (2 ways):
	1)
	2)
	Read a row of 1 file and get the characters:
	arr = IO.readlines("rimmer.txt") ---> I read of file rimmer.txt
	a = arr[6] ---> I insert the row 5 of array into variable a
	puts a.slice(9..14) ---> I print the letters from 9 to 14 of the row 5 of array
	Write and read of file using the method yaml and using an array

